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EFFECTS OF DIELECTRIC COVERS OVER 

SHUNT SLOTS I N  A WAVEGUIDE 

By W i l l i a m  F. Croswell and 
Robert B. Higgins 

Langley Research Center , 

SUMMARY 

The purpose of t h i s  study w a s  t o  determine experimentally t h e  e f f e c t s  of  
placing a d i e l e c t r i c  cover over a shunt slot i n  a waveguide. 
displacements were chosen so t h a t  t h e  data cover t h e  waveguide bandwidth f o r  
d i e l e c t r i c  constants from 1 t o  4. Formulas a r e  developed, by u t i l i z i n g  t h e  
measured data, f o r  t h e  mean values of s l o t  conductance and resonant frequency 
where t h e  cover thickness i s  grea te r  than one-fourth of t he  wavelength i n  t h e  
d i e l e c t r i c  material a t  resonance. I n  addition, it i s  shown t h a t  plane wave 
theory gives a bound on t h e  conductance var ia t ion  f o r  covers t h i cke r  than one- 
four th  of t he  wavelength i n  t h e  d i e l e c t r i c  material. 
standing-wave-ratio (VSWR) measilrements of l i nea r  a r rays  of dielectr ic-covered 
s l o t s  
and VSWR f o r  comparison. 

S lo t  lengths and 

Pa t t e rn  and voltage- 

designed from s ingle-s lo t  data a re  presented along with 

INTRODUCTION 

A space vehicle  reenter ing  t h e  e a r t h ' s  atmosphere a t  hypersonic v e l o c i t i e s  
will be subjec t  t o  severe environmental conditions i n  t h e  form of extreme s t ruc-  
t u r a l  loads,  hea t - t ransfer  rates, and temperatures. 
i n t e r n a l  instrumentation systems of such vehicles from excessive heat ,  common 
use i s  made of d i e l e c t r i c  ab la t ive  mater ia ls  which cover the  ex terna l  s t r u c t u r a l  
surfaces  including t h e  antennas. 
quently contain long t i m e  periods before and a f t e r  reentry.  Antennas used f o r  
such appl ica t ions  must operate s a t i s f a c t o r i l y  throughout t h e  t r a j e c t o r y  exclu- 
s i v e  of r een t ry  plasma e f f ec t s ,  a separate problem. Since t h e  ab la t ion  process 
r e s u l t s  i n  a change i n  material thickness,  antennas proposed f o r  such an app l i -  
ca t ion  must be r e l a t i v e l y  in sens i t i ve  t o  these changes i n  addi t ion  t o  f u l f i l l i n g  
t h e  usua l  minimum-weight and volume requirements. 
of these  requirements a t  microwave frequencies i s  t h e  shunt s l o t  i n  a waveguide. 
However, use of a s l o t  a r r a y  i n  t h i s  appl icat ion requi res  an extensive knowledge 
of s l o t  c h a r a c t e r i s t i c s  as a function of the thickness  and d i e l e c t r i c  constant 
of t h e  covering material. 

I n  order t o  pro tec t  t h e  

Trajector ies  of space-vehicle f l i g h t  fre- 

An antenna which meets many 

Pas t  i n t e r e s t  i n  dielectr ic-covered shunt-slot  waveguide a r rays  has been 
general ly  r e s t r i c t e d  t o  t h e  problem of providing a f ixed  t h i n  radome or  



pressurizing seal f o r  conventional radar-antenna appl icat ion.  I n  thbse , 

instances, it has been noted t h a t  severe changes occurred i n  t h e  a r r a y  charac- 
t e r i s t i c s  when a t h i n  cover was placed over s l o t s  t h a t  were designed from f r e e -  
space data (p.  32-5 of ref. 1). I n  other  instances,  data have been obtained 
which include cover e f f e c t s  f o r  a p a r t i c u l a r  a r r a y  design ( ref .  2)  but which are 
r e s t r i c t e d  t o  f ixed  t h i n  covers of a p a r t i c u l a r  d i e l e c t r i c  material. 

Ablation materials, however, cannot be r e s t r i c t e d  t o  t h i n  f ixed  layers  
because of heat-protection requirements and t h e  loss  of mater ia l  during reentry.  
Therefore, data which encompass a wide range of mater ia l  thicknesses and d ie lec-  
t r i c  constants are required f o r  reentry antenna design. An exact t h e o r e t i c a l  
solut ion t o  t h i s  problem appeared t o  be exceedingly d i f f i c u l t  since any solut ion 
will require a de ta i led  knowledge of t h e  l o c a l  reac t ive  s l o t  f i e l d s  with and 
without the presence of a d i e l e c t r i c .  Therefore, the  experimental approach w a s  
used and approximate theor ies  were developed from analysis  of measured r e s u l t s .  
Par t  of the  data obtained i n  t h i s  study has been presented i n  reference 3 .  

SYMBOLS 

broad dimension of waveguide 

narrow dimension of waveguide 

a r b i t r a r y  constant 

radial distance 

spacing between elements 

distance i n  m e d i u m  1 

distance i n  medium 2 

normalized e l e c t r i c - f i e l d  i n t e n s i t y  a t  angle 

element p a t t e r n  of idea l ized  s l o t  

frequency 

free-space s l o t  resonant frequency 

average resonant frequency 

normalized conductance 
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current  

length of s l o t  

number of sources 

coupled power 

coupled power i n t o  d i e l e c t r i c  

coupled power i n t o  free space 

rad ia t ion  res i s tance  

voltage r e f l e c t i o n  coef f ic ien t  for  s ing le  in t e r f ace  

thickness  of d i e l e c t r i c  cover 

s l o t  exc i t a t ion  vol tage 

n e t  radial propagating reac t ive  energy 

s l o t  displacement, measured from waveguide center  l i n e  t o  s l o t  center  
l i n e  

r e l a t i v e  d i e l e c t r i c  constant 

equivalent r e l a t i v e  d i e l e c t r i c  constant 

pe rmi t t i v i ty  of f r e e  space 

r e l a t i v e  d i e l e c t r i c  constant of medium 1 

r e l a t i v e  d i e l e c t r i c  constant of medium 2 

i n t r i n s i c  impedance 

angle between normal t o  a r ray  plane and far-field observation poin t  

waveguide wavelength 

free-space wavelength 

wavelength i n  d i e l e c t r i c  a t  average resonant frequency 
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P O  

D 

permeabili ty of f r e e  space 

voltage r e f l ec t ion  coef f ic ien t  

EXPERJJBNT 

For t h i s  experiment, t h e  s l o t s  were fabr ica ted  by a process i n  which e lec-  
t rode  burning i s  used as a means of removing t h e  metal. 
t h e  s l o t  are determined by the  s i z e  and shape of the  electrode.  This method 
provides a means of f ab r i ca t ing  very long arrays and sustaining required dimen- 
s iona l  precision. Rectangular-shaped slots of standard width, 0.062 inch, 
formed i n  an RG 52/U waveguide cons t i t u t e  t h e  samples used i n  t h i s  experiment. 

The s i z e  and shrpe of 

I n  order t o  cover t h e  gaveguide bandwidth, it w a s  found necessary t o  use 
a t  l e a s t  e ight  samples as shown i n  t a b l e  I. 

Figure 1 shows the  arrangement of a t y p i c a l  sample under t es t .  The wave- 
guide section containing t h e  s l o t  i s  approximately 8 inches long. The var iab le  
shor t  was required f o r  making measurements over t he  waveguide bandwidth. 
determined experimentally t h a t  t h e  6-inch ground plane i s  of s u f f i c i e n t  s i z e  t o  
simulate i n f i n i t e  ground-plane conditions as far as slot-conductance measure- 
ments are  concerned. 

It was 

Standard waveguide measurement methods were employed f o r  determining nor- 
malized conductance values. The in se r t ion  technique, using prec is ion  ca l ib ra t ed  
at tenuators ,  w a s  used f o r  measurement of high voltage standing-wave r a t i o  (VSWR) 
as given i n  reference 4. 
being measured, ex t ra  care  w a s  required i n  regard t o  l i n e  d i scon t inu i t i e s  a t  t he  
junctions. 

Because of t he  r e l a t i v e l y  low values of conductance 

Also, t he  readings had t o  be corrected f o r  waveguide w a l l  losses .  

The four  d i e l e c t r i c  materials l i s t e d  i n  t a b l e  I1 were invest igated.  Meas- 
urements were taken a t  severa l  d i sc re t e  thicknesses .  
cover the d ie lec t r ic -cons tan t  range which includes many of t he  na tu ra l  
d i e l ec t r i c s .  

An attempt w a s  made t o  

EXPERIMENTAL RESULTS 

Free Space 

The experimental r e s u l t s  f o r  t he  s l o t s  with no d i e l e c t r i c  cover a r e  pre- 
sented i n  f igure  2 i n  t h e  form of normalized resonant conductance p l o t t e d  as a 
function of resonant frequency f o r  var ious displacements x.  Equations r e l a t i n g  
physical dimensions t o  resonant conductance have been developed ( r e f .  5 )  and 
a r e  presented as equations ( 7 )  and (8) of t h i s  repor t .  
were calculated on the  bas i s  of these equations and the  per t inent  dimensions. 
The va l id i ty  of the  equations has been demonstrated by experimental values taken 
on round-end s l o t s  ( see  pp. 9-3 - 9-5 of r e f .  3 ) .  The coincidence of curves and 

The curves i n  f igu re  2 
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measured poin ts  i n  
rectangular-shaped 

t h i s  f i gu re  would appear t o  extend t h e  v a l i d i t y  t o  include 
s l o t s  a s  wel l .  

Measured values of resonant length are given i n  f igu re  3 with Z/ho p l o t t e d  
as a funct ion of ho/hg f o r  various displacements x .  Note the  apparent depend- 
ence of t h e  resonant-length r a t io .  on ho/hg as w e l l  as on x. 

Die lec t r ic  Cover 

The experimental r e s u l t s  f o r  dielectr ic-covered s l o t s  a r e  given i n  f i g -  
u re s  4 t o  11 where the  d i e l e c t r i c  constant E 
parameter. Each p l o t  contains a s e r i e s  of curves where t h e  normalized s l o t  con- 
ductance i s  p l o t t e d  aga ins t  frequency f o r  various dielectr ic-cover  thicknesses.  
Table I1 i s  given as an index t o  the  data. 

i s  the  major d i f f e r e n t i a t i n g  

ANALYSIS OF RATA 

General 

A study of t he  measured data reveals  the f a c t  t h a t  gross changes i n  t h e  
s l o t  c h a r a c t e r i s t i c s  occur with t h e  addi t ion of a d i e l e c t r i c  cover. 
t h e  s l o t s  do maintain a resonant behavior. The changes i n  s l o t  c h a r a c t e r i s t i c s  
can be summarized i n  t h e  following three  observations: 

However, 

1. The frequency a t  which resonance occurs (def ined as t h e  frequency a t  
peak conductance) decreases r ad ica l ly  a s  a function of cover thickness up t o  a 
thickness  of 0.20hE. 
frequency v a r i e s  s inusoida l ly  with a per iod of O.?h,. 
and 7. ) 

For cover thicknesses grea te r  than 0.20h,, t he  resonant 
(See f i g s .  4, 5 ,  6, 

2 .  A s ign i f i can t  reduction of normalized conductance gn occurs with t h e  
addi t ion  of a d i e l e c t r i c  cover f o r  thicknesses up t o  approximately 0.20hE. For 
thicknesses  g rea t e r  than 0.20h,, t h e  peak conductance va r i e s  s inusoidal ly ,  with 
a per iod of approximately 0.5hE. (See f i g s .  9, 10, and 11.) 

3 .  The resonant conductance i s  much lower than t h a t  predicted f o r  t h e  s l o t  
with no d i e l e c t r i c  cover. (See f i g .  2 and t ab le  111.) 

Analyses presented i n  succeeding paragraphs give f i r s t - o r d e r  predict ions fo r  a l l  
t h r e e  of t h e  major e f f e c t s  l i s t e d  previously. I n  order t o  make these  analyses,  
it w a s  necessary t o  def ine an average resonant frequency f R  which i s  a f’unction 
of t h e  d i e l e c t r i c  constant E ,  i s  not a function of t he  s l o t  displacement x or 
die lec t r ic -cover  thickness  t ,  and i s  dependent on s l o t  length 2 .  To accomplish 
t h i s ,  for a p a r t i c u l a r  d i e l e c t r i c  constant,  p l o t s  of resonant frequency as a 
funct ion of thickness  were made from t h e  measured data f o r  each of e ight  samples. 
By inspec t ing  these  curves i n  the  region where t h e  resonant frequency was 

5 



periodic  as a function of thickness,  t h e  average frequency f o r  each sample w a s  
determined. Then, by using t h e  s l o t  length 2 and the  average frequency, a 
value of l /ho vas calculated for each sample. A l l  e ight  values of l /ho were 
averaged t o  obtain a value r e l a t e d  t o  the  p a r t i c u l a r  d i e l e c t r i c  constant,. 
las t  averaging process w a s  necessary t o  eliminate t h e  secondary e f f e c t s  of wave- 
guide wavelength from t h e  data. By u t i l i z i n g  t h i s  process t h e  p l o t  shown i n  
f igure  8 wits obtained. With a knowledge of t h e  d i e l e c t r i c  constant E and t h e  
s l o t  length 2 ,  a n  average resonant frequency per ta in ing  t o  E i s  defined. The 
v e r t i c a l  dashed l i n e s  given i n  t h e  measured data i n  f igures  4 t o  7 ind ica te  t h e  
appropriate defined average resonant frequency 

This 

fR. 

S lo t  Conductance as a Function of Cover Thickness 

O f  major i n t e r e s t  i s  t h e  var ia t ion  of the  s l o t  conductance as a function 
of cover thickness. 
values were obtained from t h e  measured data and a r e  presented as s l o t  conductance 
p l o t t e d  against  the cover thickness expressed i n  wavelengths 
t o  11 a r e  such p l o t s  f o r  s l o t  displacements x = 0.066 inch, 0.093 inch, and 
0.136 inch, where 1 = 0.475 inch and a l l  d i e l e c t r i c s  a r e  considered. From 
inspection of these and similar curves, it w a s  noted t h a t  these curves became 
per iodic  with A, a f t e r  a cover having'a thickness of 0.20A, w a s  added. This 
f a c t  suggested the  appl icat ion of plane wave theory t o  t h i s  problem. From 
pages 32-4 t o  32-23 of reference 1, and with normal incidence and l o s s l e s s  
d i e l e c t r i c s  assumed, t h e  voltage r e f l e c t i o n  coef f ic ien t  f o r  a plane d i e l e c t r i c  
sheet lJith a plane wave incident  i s  given by 

By use of t h e  def in i t ion  of average resonant frequency, 

t / h E .  Figures 9 

where 

when t h e  extreme cases of thickness are considered, p may be expressed 

= o  I =WE 
2 
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and 

where n = 1, 2, 3 . . . . To r e l a t e  t h i s  information t o  the curves i n  f i g -  
ures  9 t o  11, it i s  assumed t h a t  t h e  place where t h e  maximum value of con- 
ductance occurs corresponds t o  the  case of no r e f l e c t i o n s  as given by equa- 
t i o n  ( 2 ) .  The f i rs t  case corresponding t o  equation ( 2 )  occurs a t  
f o r  a l l  d i e l e c t r i c  constants. It i s  assumed t h a t  m a x i m  power i s  coupled out 
of t h e  s l o t  a t  t h i s  thickness.  
r e f l e c t i o n  as predicted by equation ( 3 ) ,  the  amount of power coupled out of 

t h e  s l o t  at t = o.65AE i s  reduced by 

t = 0 . 6 5 ~ ~  

I n  order t o  compute t h e  e f f e c t  of maximum 

= (I1 Tr2 1)’ and con- lplf= (2n+l )  4 A€ 
verted i n t o  conductance. The dashed l i n e s  shown i n  f igures  9 t o  11 are the 
bounds on t h e  conductance as a function of d i e l e c t r i c  thickness,  with t h e  
upper l i n e  corresponding t o  no r e f l e c t i o n s  and the  lower one t o  maximum 
ref lec t ions .  
t o  give a usefu l  predict ion f o r  conductance var ia t ions .  

For a cover thickness grea te r  than 0.20AE these bounds appear 

Change i n  S l o t  Conductance From Free-Space Values 

From t h e  preceding ana lys i s  and an inspection of t h e  measured data ,  it i s  
obvious t h a t  plane-wave-plane-sheet theory alone i s  not s a t i s f a c t o r y  f o r  pre-  
d i c t i n g  t h e  change i n  s l o t  conductance t h a t  occurs with a change from t h e  uncov- 
ered s l o t  t o  t h e  covered s l o t .  
primary predict ion of s l o t  conductance t h a t  i s  s t r i c t l y  a function of the dielec-  
t r i c  constant. 

The purpose of t h i s  discussion i s  t o  obtain a 

From reference 6 t h e  rad ia t ion  resis tance of a resonant half-wave s l o t  i n  
an i n f i n i t e  ground plane may be wr i t ten  

where q i s  i n t r i n s i c  impedance. 

For t h e  case of the  s l o t  located i n  a waveguide, t h e  rad ia t ion  res i s tance  

Placing a d i e l e c t r i c  cover over t h e  s l o t  
R r  
i n  one d i r e c t i o n  (p.  295 of r e f .  7 ) .  
does not appear t o  produce any s igni f icant  changes i n  t h e  i n t e r n a l  f i e l d s  of t h e  

i s  double t h e  value given by equation ( 4 )  s ince t h e  s l o t  can radiate only 

7 



waveguide and the  i n t e r n a l  w a l l  currents  which exc i te  t h e  s l o t ,  i f  t he  cover i s  

of t h e  proper thickness = 0.65h, ’ + - n”E) ‘so t h a t  r e f l ec t ions  a r e  s m a l l .  By 

r e s t r i c t i n g  i n t e r e s t  t o  t he  case of no r e f l ec t ions  and assuming t h e  vaveguide 
and s l o t  t o  be equivalent t o  a constant current  source I operating i n t o  t h e  
rad ia t ion  res i s tance  R,, t h e  power coupled out of t h e  s l o t  i s  given by 

(. 2 

In  equation ( 5 )  t h e  e n t i r e  ha l f  space outside the  waveguide i s  considered t o  be 
completely f i l l e d  with t h e  mater ia l  having a d i e l e c t r i c  constant E. If Po i s  
t h e  power coupled out of t h e  s l o t  resonant with an ex terna l  medium and 

Pd pO,E, 
then from equation ( 5 )  

pO,cO 
i s  the power coupled out of t h e  s l o t  resonant with an ex terna l  medium 

From reference 5 t h e  normalized conductance of a resonant shunt s l o t  with no 
cover i s  given by 

where 

A calculated value of conductance f o r  shunt s l o t s  with a d i e l e c t r i c  cover can be 
obtained by using these  equations and t h e  r e s u l t  given by equation (6 ) .  
ever,  it must be remembered t h a t  a s l o t  of given length will resonate a t  a lower 
frequency with t h e  addi t ion of a cover and t h a t ,  from equation ( 7 ) ,  t h e  s l o t  
conductance i s  a function of Therefore, e i t h e r  t h e  average resonant 
frequency must be used t o  ca l cu la t e  ho or ,  if a p a r t i c u l a r  operating frequency 
i s  desired,  t h e  physical l ength  2 must be ad jus ted  according t o  f igu re  8. To 
obtain calculated values t h e  following procedure i s  used: 

How- 

Ag/ho. 

1. For a given s l o t  displacement x, t h e  s l o t  conductance i s  ca lcu la ted  
from equations (7)  and (8).  
t i c u l a r  € t o  determine t h e  resonant frequency. 

The average resonant frequency i s  used f o r  a par- 

8 



2. This value of conductance i s  converted t o  rad ia ted  power and reduced by 
as indica ted  i n  equation (6) .  1 / ~  

3 .  The reduced value of power i s  converted back t o  normalized s l o t  con- 
ductance gn. 

Table I11 shows t h e  comparison of t h e  calculated and measured values of s l o t  
conductance. 
t h e  cover i s  0.65& t h i c k  at t h e  average resonant frequency 

The measured values  correspond t o  t h e  value of conductance where 
f R .  

Calculation of Resonant Length 

Placing a t h i n  d i e l e c t r i c  cover over a shunt s l o t  causes a s ign i f i can t  
change i n  t h e  resonant length.  
i n  resonant length as a function of d i e l e c t r i c  constant.  One simple method of 
approximating the  resonant length i s  t o  assume t h a t  t h e  space surrounding t h e  
s l o t  i s  completely f i l l e d  with a mater ia l  of d i e l e c t r i c  constant E .  Then 

Figure 8 shows a measured curve of the  reduction 

where 

( 2/h0)€ resonant length with a d i e l e c t r i c  cover 

z/a resonant length with no cover 

Figure 12 shows t h e  o r i g i n a l  measured curve and the one calculated from equa- 
t i o n  (9) .  
resonant length.  
a l e n t l y  f i l l e d  with a mater ia l  having a d i e l e c t r i c  constant less than 

There i s  obvious disagreement and equation (9) p red ic t s  too  shor t  a 
This disagreement means t h a t  the  s l o t  can be considered equiv- 

E .  

A s  an approach t o  obtaining an equivalent d i e l e c t r i c  constant Eequiv, 
t h e  following approximate ana lys i s  w a s  made: 

By def in i t i on ,  only t h e  reac t ive  f i e l d s  are involved i n  t h e  determination 
of resonant length.  Since the  reac t ive  f i e l d s  are negl ig ib le  i n  t h e  far f i e l d ,  
only the source f i e l d s  o r  f ie lds  near t h e  s lo t  are important. A n  inspect ion of 
t h e  previous analyses ind ica t e s  t h a t  f a r - f i e ld  theory gives good approximations 
t o  conductance problems with covers 0 . 2 0 7 ~  thick.  
most probably extend only i n t o  very t h i n  layers  of d i e l e c t r i c  near the s l o t .  
source f i e l d  may be considered a s  consis t ing of time-harmonic charge p a i r s  which 
result from the exc i t a t ion  vol tage Vo across t h e  s l o t .  The displacement cur- 
r e n t  across  the s l o t  must terminate i n  these charge p a i r s  t o  s a t i s f y  cont inui ty  
conditions.  
small curren t  elements or  Hertz dipoles  having a current  equal t o  the displace-  
ment cur ren t  I. 

Therefore, the r eac t ive  f i e l d s  
The 

These source charge p a i r s  can then be interchangeably considered a s  

T h i s  concept i s  usefu l  since the exact f i e l d s  of such a source 
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a r e  known. 
i s  predominantly e l e c t r i c  and i s  of t h e  so-called quas i - s ta t ic  form. 
only very t h i n  layers  appear t o  be of importance, quas i - s ta t ic  theory can be 
used t o  convert t h e  problem t o  a .simple capacitor equivalent as shown i n  f i g -  
ure  13. 

Near t h e  Hertz dipole or ,  equivalently,  the  charge p a i r s ,  the  f i e l d  
Since 

From pages 55 and 36 of reference 8 fo r  e l e c t r i c  f i e l d s  p a r a l l e l  t o  t h e  
in te r faces  a reduction of t h e  capacitor can be made as shown i n  f igure  14. 

The s l o t  then can be considered t o  be equivalently f i l l e d  with a mater ia l  
having a d i e l e c t r i c  constant cequiv defined as 

Unfortunately, the  distances d l  and d2 a r e  unknown. However, by using t h e  

From reference 9 the  net  r a d i a l l y  propagating reac t ive  energy from a Hertz dipole 
can be given as 

, 
I Hertz dipole equivalent a re la t ionship  between d l  and d2 can be obtained. 

C w = -  
€d3 

By assuming an equal d i s t r i b u t i o n  of energy on both s ides  of t h e  slot t h e  f o l -  
lowing relat ionship can be obtained: 

Theref ore 

o r  

d2 = dl@ 

10 



Combining e quat i on (10) and 

- €equiv - 

equation (14)  r e su l t s  i n  t h e  following equation: 

i- 

o r  

But 

€1 = 1 

€2 = € 

Therefore, equation (16) becomes 

+ €213 
Eequiv = 

4 3  
1 + E  

A curve of resonant length as a function of d i e l e c t r i c  constant can be obtained 
from 

where ~ ’QUiV i s  given i n  equation (17).  Calculated r e s u l t s  obta,-iel 

equation (18) are shown i n  f igu re  12. 

ARRAYS 

by using 

Two resonant a r rays  were designed on the bas i s  of t h e  s ing le - s lo t  conduct- 
ance measurements, fabr ica ted ,  and t e s t ed .  The first design was composed of 

11 



25 s l o t s  a l t e r n a t e l y  located on opposite s ides  of the waveguide center  l i n k ,  
spaced on hg/2 centers.  The second design was similar but w a s  composed of 
56 s l o t s .  The input VSWR and f a r - f i e l d  rad ia t ion  pa t te rns  were measured. 

VSWR 

The midband VSWR measured l e s s  than 1.1 on both t h e  25-slot  and t h e  36-slot  
array.  The VSWR c h a r a c t e r i s t i c s  of the  25-slot a r ray  p l o t t e d  as a function of 
frequency f o r  various cover t h i c h e s s e s  a r e  shown i n  f igure  15. The frequency 
band over which t h e  a r ray  can be operated without major degradation of the  main 
lobe shape or amplitude i s  indicated by the  dashed l i n e s  i n  f igure  15. C a l -  
culations based on s ingle-s lot  measurements ind ica te  midband v a r i a t i o n  of VSWR 
from 1.03 t o  1.08 over t h e  range of cover thickness indicated i n  f igure  15. 
Results s imilar  t o  those i n  f igure  15 were obtained on the  56 -~10 t  a r r a y  except 
t h a t  the operating band w a s  approximately 0.03 gigacycle. 

Radiation Pa t te rns  

Since t h e  a r ray  designs were t h e  resonant type,  the  a r ray  f a c t o r  i s  defined 
by t h e  discrete-source theory of reference 10 as 

E(€) )  = . ,  
pnd' - s i n  8 

2 

To a f i r s t  approximation, the  element p a t t e r n  can be defined by (p.  8-3 of 
r e f .  11) 

cos($ s i n  0) 

COS e El(8) = 

based on t h e  assumption t h a t  t h e  s l o t  i s  located i n  an i n f i n i t e  ground plane 
surrounded by f r e e  space. 
equation (19) by equation (20) ( p a t t e r n  mul t ip l ica t ion)  and assuming negl ig ib le  
coupling between elements. 

The a r r a y  p a t t e r n  can be obtained by multiplying 

Calculations of a r ray  p a t t e r n s  were made and a r e  compared with measured 
pa t te rns  i n  f igure  16. 
ca tes  tha t  mutual coupling i s  negl ig ib le  f o r  an a r ray  of dielectr ic-covered 
shunt s l o t s .  It should be noted t h a t  no unusual care w a s  exercised i n  f i t t i n g  
t h e  d i e l e c t r i c  covers t o  t h e  surface of t h e  waveguide. 
t h a t  f o r - l a r g e  arrays of shunt s l o t s  t h e  tolerance on cover f i t  i s  not unduly 
c r i t i c a l .  

Agreement between calculated and measured pa t te rns  i n d i -  

It i s  therefore  believed 

Within t h e  operating band previously indicated i n  figure 15, t h e  
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pat te rns  wer similar t o  those given a t  m 
and pos i t ion  of lower order sidelobes.  

lband except f o r  changes i n  t h e  l e v e l  

CONCLUDING FXMARKS 

The primary purpose of t h i s  study w a s  t o  determine the  design parameters 
f o r  dielectr ic-covered shunt-s lot  arrays,  where t h e  thickness of t he  cover w a s  
changing as a result of reent ry  environment. 
i n sens i t i ve  t o  dielectr ic-cover  proper t ies  a re  ava i lab le  for materials  having 
d i e l e c t r i c  constants l e s s  than 4 over t h e  normal waveguide bandwidth. 

Array designs t h a t  a r e  r e l a t i v e l y  

Approximate t h e o r e t i c a l  formulas have been developed which give predic t ions  
of normalized s l o t  conductance as a function of thickness and resonant length as 
a funct ion of d i e l e c t r i c  constant,  accurate t o  a t  least 10 percent.  
be noted t h a t  these formulas were developed from measurements on mater ia l s  
having d i e l e c t r i c  constants l e s s  than 4. However, i f  these  formulas a r e  used 
t o  extend the  data  t o  materials having d i e l e c t r i c  constants greater  than 4, it 
can be shown t h a t  t he  voltage standing-wave r a t i o  (VSWR) of shunt-s lot  a r rays  
w i l l  exceed acceptable bounds (VSWR > 2) a s  a function of cover thickness .  

It should 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley S ta t ion ,  Hampton, V a . ,  August 25, 1964. 
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Sample Slot displacement , 
x, i n .  

0.066 

.096 

m -093 

.094 

* 133 

.136 

.132 

.185 

TABU I 

TEST SAMPLES 

Slo t  length , 
2 ,  i n .  

~ 

0.475 

.449 

475 

506 

.449 

475 

.506 

.449 
- 

Re sonant 
frequency, f R ,  Gc 

11.4 

12.0 

11.5 

10.8 

12.2 

11.0 

12.4 
- 

Normalized 
conductance , gn 

0.029 

.042 

.053 

-059 

.072 

-097 

.111 

.115 



TABLE I1 

INDEX TO mEFUMENTAL DIELECTRIC-COVERFD S"T-SL0T DATA 

I i e l ec t r i c  constanl 
of covering, E 

? l o t  displacement, 
x, i n .  

~~ 

Slot l e n g t h  
2 ,  i n .  

!over thickness I 
t ,  i n .  

'requency range; 
G c  

Loss 
;angen 

2.10 I .  0002 0.066 
.og6 
.093 
.Og4 - 133 
.136 
.132 
.185 

0.475 
.449 
.475 
.506 
.449 - 475 
. w 6  
.449 

0.095 t o  0.935 
0.095 t o  0.935 
0.095 t o  0.935 
0.095 t o  0.935 
0.095 to 0.935 
0.095 t o  0.935 
0.095 t o  0.935 
0.095 to 0.935 

9.4 t o  10.7 

9 .2  t o  11.0 

i o  t o  11.6 
9.0 t o  10.8 

10 t o  11.4 

9.0 t o  10.5 

9.0 t o  10.4 
10.1 t o  11 .4  

2.78 1.020 0.066 
.og6 - 093 
.094 - 133 
.136 
.132 
.185 

0 - 475 
.449 
* 475 
.506 
.449 
* 475 
* 506 
.449 

8.9 t o  10.2 
9.2 t o  11.0 

8.2 t o  9.8 
8.7 t o  11.0 
8.7 t o  10.3 

8.9 t o  11.0 

8.6 t o  10.4 

8.2 t o  10.0 

0.090 to 0.710 
0.090 t o  0.710 
0.090 to 0.710 
0.090 t o  0.710 
0.120 to 0.860 
0.090 t o  0.710 
0.120 t o  0.800 
0.120 t o  0.860 

0.100 t o  0.900 
0.100 to 0.900 
0.100 t o  0.900 
0.100 t o  0.900 
0.100 t o  0.900 
0.100 t o  0.900 
0.100 t o  0.900 
0.100 to 0.900 

0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 
0.125 t o  0.875 

8 .5  t o  10.0 
8.7 t o  10.1 
8.6 t o  9.8 
8.0 to 9.2 
8.0 to 10.1 
8.2 t o  9.6 
7.7 to 9.2 
8.9 to 10.2 

3.31 I. 024 0.066 
.096 
* 093 
.Og4 
* 133 
.136 
.132 
.185 

0.475 
.449 
* 475 
.506 
.449 - 475 
.506 
.449 

0.475 
.449 - 475 
.506 
.449 
.475 
.506 
.449 

8.0 t o  9.2 
8 .4  t o  9.6 
8.0 t o  9.2 
7.6 t o  8.7 
8 . 4  to 9.6 
8.0 t o  9.2 
7.7 t o  8.6 
8 . 4  t o  9.6 

3.78 ).0001 

___ 

0.066 
.096 
* 093 
.094 - 133 
.136 
.132 
.185 
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Sample 

TABLE I11 

COMPARISON OF MEASJ€ED AND C A I C W m D  NORMALIZED CONMJCTANCE 

Normalized condukance for  cover having - 
E = 2.10 

2 alculat  e t 

0.019 

.028 

037 

.Ob9 

.050 

.071 

.080 

* 079 

Measured 

0.021 

.028 

-036 

.046 

.044 

.066 

.081 

- 077 

E = 2.78 

:alculated 

0.019 

,028 

,036 

.om 

.048 

.062 

* 075 

.072 

Neasured 

0.019 

.026 

.030 

.Ob5 

-042 

. O S  

077 

-075 

E = 3.31 

:alculat e d 

0.019 

.029 

037 

.051 

.048 

.061 

* 075 

,070 

leasurec 

0.020 

.025 

.034 

.Ob7 

.042 

* 057 

.078 

.066 

E = 3.78 

:alculated 

0.024 

.031 

.Ob2 

* 053 

053 

.063 

.071 

.068 

Ieasurec 

0.021 

.029 

.038 

.050 

.048 

-069 

.090 

.083 



x, in. 

Figure 1.- T e s t  sample. 

0 Measured 

- Calculated 

L-63-8917 

&i RG 52/U 

- V  
9 -0 9.5 10.0 10.5 11 .o 11.5 12 .o 12.5 

frequency, Gc 

Figure 2.- Normalized resonant conductance as a funct ion of resonant frequency f o r  various 
s l o t  displacements. 
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50 

949 

.4E 

.47 

.4t 

.45 

x, in. 
x, in. 

0 0.047 

- I I 1 1 1 1 1 1 1 1 1 1 
0 $0.60 o .65 0.70 0.75 0.60 o .a5 0.90 

i 1 1 b h g  1 1 1 
8.2 8.6 9 02 9.9 12.5 

Frequency, Gc 

Figure 3 . -  Resonant length a s  a function of r a t i o  of free-space wavelength t o  waveguide 
wavelength f o r  various s l o t  displacements. 



I t. in. 

c 

I 
.w5 n 

.w 

.935 

n I 1 I I I I ,  1 -1 I 
o y  9.0 9.5 10.0 10.5 11 .o 

Frequency, Gc 

(a )  x = 0.066 inch; 2 = 0.475 inch; 
f o  = 11.4 gigacycles. 

.935 

.@O 

-515 
.840 
.340 

I 
I 1 

10.0 10.5 ll .O 

Frequency, oc  

( c )  x = 0.093 inch; 2 = 0.475 inch; 
f o  = 11.5 gigacycles.  

I I I I 
0 10 .o 10.5 11.0. u. .5 

Requency, Gc 

(b) x = 0.096 inch; 2 = 0.449 inch; 
f o  = 12.0 gigacycles. 

I \ 
I 

0 9 .O 9.5 10.0 10.5 
I 1 1  I I 

Frequency, cc 

(d )  x = 0.094 inch; 2 = 0.506 inch; 
f o  = 10.8 gigacycles.  

Figure 4.- Normalized conductance a s  a funct ion of frequency f o r  various cover thicknesses.  
E = 2.10. 



.07 - 
- 

.06 - 
E w 

> I 

o +  
I I 1 1  I 1 

10 .o 10.5 11.0 11.5 12 .0 

Frequency, Gc 

( e )  x = 0.133 inch; 2 = 0.449 inch; f, = 12.2 gigacycles.  

.07 

.c6 

-05 

.Oh 

.0: 

t, in. 
/ I f ,  

I 

I 

1 I I 1  1 I 
9.0 9.5 10.0 10.5 11 .o 

Rrquency, Gc 

x = 0.136 inch; 2 = 0.475 inch; f, = 11.5 gigacycles. 

Figure 4.- Continued. 
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C M 

Frequency, Cc 

0.132 inch; 2 = 0.506 inch; f, = 11.0 gigacycles. 

/ '  \ 
t, in. \ t, in. 

I 
I 
I 

t 

o v  
1 I I J 

10.0 10.5 11 .o u . 5  
Frequency, Cc 

( h )  x = 0.185 inch; 2 = 0.449 inch; f, = 12.4 gigacycles. 

Figure 4.- Concluded. 
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.04 

2 .03 

4 
s 
1 .02 
p 
1 :: .01 

1 'R 
I 

- 

- 

- 

- 

- 

- 

- 

t 
0 - 9 7  9.5 

I I I 1 

10.0 10.5 
Requency, Gc 

( a )  x = 0.066 inch; 2 = 0.475 inch; fo = 11.4 gigacycles.  

.a * 0 5 t  

t, in. 

I. 
I 

I I I 1 1 1  1 I .  I I 1 
0 9.5 10.0 10.5 ll .O u . 5  

Frequency, Gc 

(b) x = 0.0% inch; 2 = 0.449 inch; fo  = 12.0 gigacycles.  

Figure 5.- Normalized conductance a s  a function of frequency f o r  various cover thiclmesses.  
E = 2.70. 



.06 

* 0 7 1  

I ’ \  ! 

1 
I 

I I I 1  I 1 I I 

0 8.5 9.0 9.5 10.0 10.5 
Requency, Gc 

( c )  x = 0.093 inch; 2 = 0.475 inch; fo = 11.5 gigacycles. 

8 *06 t 
\ 

1 I I I I I I 
o b.o 8.5 9.0 9.5 LO .o 

Frequency, Gc 

(d)  x = 0.094 inch; 2 = 0.506 inch; f, = 10.8 gigacycles.  

Figure 5.- Continued. 
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-05 

.04 

-03 

.02 

.01 

0 

I 
I 

I 1 l I  I 

10 .o 10.5 11 .o VA 
I 

9 -0 9.5 
frequency, Gc 

= 0.133 inch; 2 = 0.449 inch; f, = 12.2 gigacycles. 

t, in. 

.WO 

I I I I I  I , I 1 
0 8.5 9 -0 9.5 10.0 10.5 

Frequency, Gc 

(f) x = 0.136 inch; 2 = 0.475 inch; fo = 11.5 gigacycle;. 
il’ 

Figure 5.- Continued. 
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-05 - 

- 
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I \ 
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I 
0 

I I 1 1 

8.0 8.5 9 .o 9.5 10.0 

Frequency, GI. 

( g )  x = 0.132 inch; 2 = 0.506 inch; f, = 11.0 gigacycles. 

/ 
'\ 

\ 
I 

I 
A 

o y  
1 I I 1  I I 

Frequency, Gc 

I 
9.0 9.5 10.0 10.5 11 .o 11.5 

( h )  x = 0.185 inch; 1 = 0.449 inch; f, = 12.4 gigacycles. 
* 

Figure 5.- Concluded. 
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I 
'R 

I 

- I 
I 

A 
o r  

I 1 1 ,  I 1 I 
8.5 9.0 9.5 10 .o 

Frequency, Gc 

.011 

t 

( a )  x = 0.066 inch; 2 = 0.475 inch; 
f o  = 11.4 gigacycles. 

I 

"R 
I 

I 
Av I 

I I 1  I 
0 8.5 9.0 9.5 10 .o 10.5 

Frequency, Gc 

(b) x = 0.096 inch; 2 = 0.449 inch; 
Po = 12.0 gigacycles. 

I 
I 
I 

I 
0 

1 I I  I 1 I I 
8.5 9 *O 9.5 10.0 

Frequency, Gc 

( e )  x = 0.093 inch; 2 = 0.475 inch; 
fo  = 11.5 gigacycles. 

(a) x = 0.094 inch; 2 = 0.506 inch; 
fo  = 10.8 gigacycles.  

Figure 6.- Normalized conductance as a function of frequency f o r  various cover thicknesses.  
E = 3.31. 
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t, in. 

t I 

I "A 1 
I 

I I I 1 I 1 1  I I I 
8.0 a .5 9 SO 9.5 10 .o 10.5 0 

1 

Requency, Gc 

( e )  x = 0.133 inch; 2 = 0.449 inch; f, = 12.2 gigacycles. 

I \ 
I 

0 
1 I ,  1 1 J 

8.0 8.5 9 -0 9.5 10.0 

Requency, Gc 

(f) x = 0.136 Inch; 2 = 0.475 inch; f, = 11.5 gigacycles. 

Figure 6.- Continued. 
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Av I 
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1 I 1 J 
0 7.5 8.0 8.5 9.0 9.5 

Frequency, Gc 

= 0.132 inch; Z = 0.506 inch; f o  = 11.0 gigacycles. 

t, .lo in. ,/ i f R  \ 
I 

. 

L *  1 
I 

o v  
I 1 .  I , 

8.5 9 .O 9.5 10.0 10.5 
Frequency, Gc 

(h) x = 0.185 inch; 1 = 0.449 inch; f, = l2.4 gigacycles. 

Figure 6. - Concluded. 



i 
I f R  

0 8.0 8.5 9.0 9.5 
Frequency, Gc 

( a )  x = 0.066 inch; 2 = 0.475 inch; 
fo = 11.4  gigacycles. 

t I 

t. in. 

*05 1 I 

f '  
R I  

I 

(b) x = 0.096 inch; 2 = 0.449 inch; 
fo = 12.0 gigacycles. 

- I 
I 

0 "  
1 I 1 1  I 1 I 1 

8 .O 8.5 9 *O 9.5 
Frequency, GC 

( c )  x = 0.093 inch; 2 = 0.475 inch; 
f, = 11.5 gigacycles. 

I 
I 
I 
I 

I 
0 8.5 9 .O 9.5 10.0 

1 I 1  1 1 

Frequency, cc 

.O 

Frequency, Cc 

(d) x = 0.094 inch; 2 = 0.506 inch; 
f o  = 10.8 gigacycles. 

Figure 7.- Normalized conductance as a funct ion of frequency f o r  var ious cover t h i c h e s s e s .  
E = 3.70. 



Requency, Gc Frequency, Gc 

( e )  x = 0.133 inch; 2 = 0.449 inch; 
f, = 12.2 gigacycles. 

(f) x = 0.136 inch; 2 = 0.475 inch; 
f, = 11.5 gigacycles. 

.lo - 

.w - 

tf 

f .oh- 

1 
s .o, - 
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1 
9 - 

.06 r 

I 
I 
I 

8 .O b.5 9 .O 

Frequer~y, Gc 

m" 

I I 

8.5 9 .O 9.5 10.0 

Frequency, Gc 

( g )  x = 0.132 inch; 2 = 0.506 inch; (h) x = 0.185 inch; 2 = 0.449 inch; 
f, = 12.4 gigacycles. fo = 11.0 gigacycles. 

Figure 7.- Concluded. 



1 I 1 I 1 1 1 
1 .o 1.5 2 .o 2.5 3 00 3.5 4 .O 4.5 

Dielectric canstant, E 

Figure 8.- Resonant-length ratio as a function of dielectric constant. 
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( a )  E = 3.78; fR = 8.6 gigacycles. 

(b) E = 3.31; fR = 9 .1  gigacycles. 

(c) E = 2.78; fR = 9.6 gigacycles. 

I L 1 I 1 I I 1 I I I I I 

t / A ,  

0 .2 .4 .6 .b 1 .o 1.2 

(d)  E = 2.10; fR = 10.2 gigacycles. 

Figure 9.- Normalized conductance as  a function of cover thickness i n  terms of wavelength i n  
t h e  d i e l e c t r i c  for x = 0.066 inch and 2 = 0.475 inch. 
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( a )  E = 3.78; fR = 8.6 gigacycles. 

.04 t \ 

I 1 1 1 I I 1 I 1 I I I 
0 .2 .4 .6 .a 1 .o 1.2 

t/h, 

(b) E = 3-31; fR = 9.1 gigacycles. 

Figure IO.- Normalized conductance as a fbnction of cover thickness i n  terms of wavelength i n  
the  d i e l e c t r i c  f o r  x = 0.093 inch and 2 = 0.475 inch. 
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( c )  E = 2.78; fR = 9.6 gigacycles.  
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(d) E = 2.10; fR = 10.2 gigacycles.  

Figure 10. - Concluded. 



( a )  E = 3.78; f R  = 8.6 gigacycles.  

I 1 I I I 1 1 1 I I I I 1 

t/& 

0 .2 .L .b .o 1 .i) 1.2 

(b) E = 3.31; f R  = 9.1 gigacycles.  

Figure 11.- Normalized conductance as a funct ion of cover thickness  i n  terms of wavelength i n  
t h e  d i e l e c t r i c  f o r  x = 0.156 inch and 2 = 0.475 Inch. 
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( c )  E = 2.78; fR = 9.6 gigacycles. 

- 

- 

(d)  E = 2.10; f R  = 10.2 gigacycles.  

Figure 11. - Concluded. 
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Figure 12.-  Comparison of t h e o r e t i c a l  and experimental values of resonant length as a 
funct ion of d i e l e c t r i c  constant.  
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( a )  S lo t  i n  ground plane. 

P 

(b)  Equivalent capacitor.  

Figure 13. - Reduction of s l o t  i n  ground 
plane t o  a quas i - s t a t i c  equivalent. 

( a )  Original form. 

P 

6 
( b )  Equivalent form. 

Figure 14 . -  Reduction of quasi-  
s t a t i c  forms. 

0 
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Figure 15.- VSWR of 25-s lo t  a r r ay  as a function of frequency f o r  various cover thicknesses.  
E = 2.78. 



( a )  25-slot  a r ray ;  f = 10.03 gigacycles.  

Calculated 
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e, deE 

(b) 56-slot  array;  f = 9.41 gigacycles.  

Figure 16.- Pr inc ipa l  H-plane radiat ion pa t te rns  of l i n e a r  resonant a r rays .  
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